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1 Introduction and Summary

During the first year of this program, we focussed on development of an-

alytical methods for representation of multiple scattering effects in het-

erogeneous media. We have examined seve~ral methods for representation

p., and computation of effective parameter models for the media in terms of

statistical characterizations of the media. These methods lead to represen-

tation for the effective parameters, e.g., the effective dielectric constant or

conductivity in a heterogeneous medium. Since these representations may

* be difficult to evaluate in specific cases, we have also examined current re-

p..- search on the derivation of bounds for the effective parameters as~ a means

of quickly providing good approximations to the behavior of the medium.

* Our work on the T-matrix methods is summarized in section 1. We plan

to continue this work to develop numerical algorithms for the evaluation of

scattering cross sections and absorption/dissipation mechanisms in typical

foliage configurations. It is important to emphasize that the T-matrix

methods, though formal in structure, provide simple models for multiple

scattering phenomena which are valid for a wide range of frequencies (of

the incident radiation).

The work on the use of "multiple-scale" asymptotic analysis (homoge-

nization) for the representation of scattering processes is given in section

2. This is primarily a "low frequency" theory, valid when the wave length

of the incident radiation exceeds the characteristic dimensions of inter-



particle separation in the scattering medium. The homogenization method

does, however, provide a systematic procedure for the construction of high

order approximations to the "effective parameter" representations of the

scattering process. These approximations may be evaluated by common

numerical procedures when the scattering medium has a periodic struc-

ture. We describe this case flrpt in section 3, before turning to the more

realistic, but less tractable, case when the physical model parameters (per-

mittivity, conductivity, and permeability) are random functions of position

in the medium. We have not completed our analysis of the probabilistic

case at this writing, and we report only on a basic mathematical result for

a key quantity arising in the homogenization method.

In section 4 we examine the derivation and use of "bounds" on the

effective parameters in a scattering problem. The derivation of bounds

is an old subject in scattering theory, dating from early in this century.

Nevertheless, there has been some very interesting recent work on various

* methods for deriving bounds. We discuss this work briefly in section 4, as it

2 applies to the problem of scattering from foliage. As with homogenization,

* the class of bounds discussed applies mostly to the low frequency case.

2
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2 T-matrix Approximations to Multiple Scat-

tering

In this section we consider a classical approach based on the "T-matrix

formalism" for the problem of modeling scattering in a region containing

two or more types of dielectric scatterers arranged in a random geometry

in a surrounding medium. Models for scattering from a medium containing

a two (or more) classes of (randomly oriented) scatterers in an enveloping

medium are prescribed in terms of the definition and derivation of approx-

imations for the "effective dielectric constant" resulting in a family of ap-

proximations for an "effective scattering representation" for heterogenous

media.

2.1 Basic Framework

Consider a region 0 of space occupied by a homogeneous (background)

dielectric medium with dielectric constant co containing elements from two

classes of scatterers with dielectric constants fl,(2 . Let v,,,i = 1,2,j =

1, 2,..., Ni, be the subsets of 0 occupied by scattering elements j of class

i. The dielectric properties of the composite material in 0 are described

by
(X CO + 2 N,() = E0 + O) - W x(z)1)

3
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.,where
W"" 1 x E Vii(2x,,,(z) = {1z , 2

10 x 0 t,;i
,z J

Let 6, be a (dimensionless) parameter describing a characteristic dimension

of elementary scatterers in class i (e.g., the radius of spherical scatterers);

and let pi be the total volume fraction of 0 occupied by scatterers of class

i = 1, 2. Suppose a constant (in amplitude - time harmonic) field is incident

on the region 0.

We wish to characterize the scattering properties of the composite ma-

terial in the limit N --. oo, 6, -* 0,i = 1,2, with PI,P2 constant. We are

particularly interested in evaluating the relative roles of the two classes of

scatterers in the scattering process, e.g., in terms of their relative densities

pi in the cases (a) P1,P2 -" 0 with pi/p, - 0(1) and (b) PI,P2 -' 0 with

PiP - 0.

We shall sketch the development of a family of effective scattering ap-

proximations for the material using the multiple scattering framework de-

veloped originally by M. Lax (1951,1952).

2.2 Transition Operator Representations

We use the transition operator formalism of classical scattering theory (Lax

1951,1952,1973) as used by (Lang 1981) and (Kohler and Papanicolaou

1981) as a framework for the derivation of several formulas for an effective

4
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dielectric constant for the composite medium. Maxwell's equations for this

situation may be written in the form

2 Ni

v. (oE) + EC,, - ,o) E V. [xE,,]E = 0 (3)

VxE=0

with the boundary condition

< E >- E as N,N 2 - oo (4)

where < • > is expectation and E is the constant external field. The

constituent relationship

D(x) = e(x)E(x) (5)

and the condition

< D(-) >= c'E (6)

defines the effective dielectric constant for the composite material.

Rewriting (3) in abstract form

(Lo+M)E=O, VxE=0 (7)

where

Lo = V. (co.)
N.

M=M + M2, Mi=ZVi (8)
L=W

5
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V= (C, - to) -VI×-,i

we have
';

E +L ' = F (9)

as the integral form of (3). F is chosen so that

LoF = 0, < E >= T. (10)

"K The transition operator ("matrix") T is defined as follows:
9-

L -M = (Lo + M - M)-'M

- [(Lo + M)(I - (Lo + M)-'M-'M (11)

I,. - T)-'

with T = (Lo + M)- M. So (9) becomes

11 + T(I - T)-']E = F (12)

or

E =(I- T)F (13)

The condition (10) gives

F = (I- < T >) (14)

E = (I - T)(I- < T >)-'E (15)

Using (5)(6)(15), we have

(< e > - T >)(I- T >)-(16)

'

9'.
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as the definition of e" in terms of the transition operator. It is apparent

that knowledge of T completely characterizes the scattering properties of

the composite medium. The operator T is related to the scattering am-

plitudes of the individual particles, and to their interactions. For simple

(single) dipole scatterers, T can be determined from the polarizability of

the element; and so, T is defined in terms of quantities of physical in-

~. . terest. Other properties of the transition operator are described in (Lax

1951,1952,1973), (Lang 1981), and (Kohler and Papanicolaou 1981). Our

analysis of the representation (15) (16) is based on (Kohler and Papanico-

laou 1981).

To bring out the roles of the two classes of scatterers, we reconsider (9)

E + Lo1 (M + M 2)E = F (17)

I
p which may be written as

SE F - TIE, - T 2E 2  (18)

* .- ' with

0.Lo'M = T(I - T)

Z. = (Lo + M,)-M(19)

E= (I - T)-'E

since Ei - TE. = E, we have

2
E, + Z TEj= F (20)

k~t

7
I.



."

(The sum in (20) is degenerate; but this is the appropriate form when 0

contains K > 2 classes of scatterers.) Equations (18)-(20) express the field

in terms of the fields and transition operators associated with each class of

scatterers in the composite medium.

Now

T = (Lo + M, + M 2) -(M + M 2) (21)

= (I + T1 2 )- 1 T 1 + (I + T2 1 )-'T

where the pair transition operators are

T 3 -(Lo + M,)-Mj, ,i 4 1,2. (22)

This representation gives the formula

E* - [< e > - < E(I + T12)-T > - < c(I + T12)-T 2 >1 (23)

'[I- < (I + T12)-'T > - < (I + T12)-'T 2 >1-'

for the effective dielectric constant in which the roles of each class of scat-

terers and their interaction is explicit. We could continue this process to
make the role of each elementary scatterer of class i explicit. Note that

(23) contains no approximations.

2.3 Average T-Matrix Approximation (ATA)

Expanding

T =T + T2 -T12T- T2T2 +' (24)

8
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neglecting the higher order terms (T 12T,...), and substituting in (23), we

obtain the simple apprximation
2 2

[< c > - < cT, >III- L < T (25)
j=1 s=1

called the average T-matrix approximation (ATA) (Lax 1951,1973) (Kohler

and Papanicolaou 1981). The expressions < Tj > and < eT > in (25)

diverge in typical cases, so the ATA must be used with care.

It is possible to evaluate (25) in the limit as the sizes of the elemen-0
tary scatterers approaches zero. Suppose each class consists of spherical

scatterers having radii 6,, i = 1, 2 with

= r6, c, (26)

the volume fraction occupied by each class. Here c, is the average number

of sphere centers per unit volume, this case leads to the approximation

S ( ~ (27)
1 + Pilel (0-+ I P2(2 [ 10-(2

- which is a version of the Clauasius - Moesotti formula (Kohler and Papani-

colaou 1981, p. 213). In general, the Claussius - Mos,. -i formula is viewed

as a good approximation for low to moderate volume fractions pi, i = 1, 2.

The ATA not only contains divergent terms as a rule, it also fails to

account for the interactions between scatterers. A family of more refined

approximations has been developed to include interaction effects in formulas

for effective scattering representations which are nonetheless computation-

ally feasible (Lax 1951,1952,1973) (Elliott et al 1974).

g



2.4 Coherent Potential Approximation

The simplest of these is the coherent potential approzimation (CPA) which

results (in effect) from neglecting the difference between the field exciting

the medium and the average field. Let #1, 12 be paxameters to be selected,

and consider Maxwell's equations rewritten as

2 2 N,

.V.[3,eoE] + E V . [(e, - 'o)x,;Ej
" =1 i=ij=1

2 Ni

-"+ -- E (28)

VxE=O
V./ x.0

We may write this abstractly as

(L + MO)E = 0 (29)

with

= V. (13Io-) + V. (0o2 0 .)

% 6 2 Ni
M -= EEVII (30)

=# ,..i=1 j=I
_ £0e ... v -[(f, - fo)X, .l + -,(I - fl,)V •

Ni

The same argument as before yields the representation
2 N, 2 N.

.,--., £ . [<e > - < >1[1-Z <T> -  (31)
' - =1 1--- i1 3=1

where

= VPj-'Vf (32)

10
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The CPA is based on choosing 0 to "optimize" the approximation in (31).

Let

w'q(z) = (Tog)(z) (33)

so

[V q,o'q + V f(,, - fo) x,,, ," + ,- - Wi)

= -[(Ei - Eo)X,,g + N(I - /,)g] (34)

V X wii = 0

Let

.i N Pio + 1(1 -/3,)leo : --Pio for N, large (35)
ij i wer

and wii= w' + W2 where

V. (c ,NW) + V [(,, - fo)x,,,,,' (36)

= v [(, - EO)xu,,gl

V (ffdw) + V. [(E, - ,o)x 1 .,wq (37)

Vx ' = 0= v x g

I = 0 XW 2

Let {y/} be the locations of the centers of the individual scattering

elements. For 6, small, we may replace g on the right in (36) by g(.rl) = g,,.

Using this and the approximation

co .N /3o for N large (38)

-:r 11
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we have
i q -- o- f 63V.[g,,'(X - yr),xyN 3)

3,co + 6, - o LI

W'(z W -- gq, Ijz - YN I < 6i
3)3,6o + 6, - to

a result similar to (Kohler and Papanicolaou 1981, sect. 8). In addition,

using (38) in (37)

= 1 V f(X - Y) (40)y

47r#jN, I -Y1 dy + ,,,

where

"" 1o--,, ()- 5fi '
g i i ( - - -  Ix-yrI > 6i (41)

) 3fo+N, +,,,1--1<6,

* ~. Combining these, we have

2 N i 2 ( 1 - 0( x - ) y dS(T! g)( W ( ,)4r IX - y13

2 o Cj Nit 3 giz - (X - 42i2 N----1 i ,it)

3E o-o 67 Z(' - Xo,,(x))V [ - ]3 (42)

2 to - e Ni 2 wN (

i=1l o + 6-6 t ( j=l i= j=1

Arguing as in (Kohler and Papanicolaou 1981, sect. 8), the last term on the

right in (42) is O(NJ1 ) on the average as N -- oo. We take the expectation

and choose 1 so that
2 N,

<i= =E T!g >= 0 (43)
' , j=1

12
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This is the CPA. This requires

(1-3,) = o - ,i-1,2 (44)
3/3,j - 3/3,eo + eg - c' 12(4

where p, = 1r6%c, with ci the average number of scattering centers (of class

i) per unit volume.

With 6, chosen from (44), we have < Es=I ITO > = 0, and so,

the effective dielectric constant may be approximated using the CPA by

evaluating (31).

3 Homogenization and Multiple Scattering

In this section we turn our attention to an alternative method for represen-

tation of multiple scattering effects in heterogeneous media. The method is

a variation of the "homogenization" procedure which has been used widely

in mathematical physics and engineering to develop effective media approx-

imations. This method has promise for for several reasons:

1. It leads more naturally than the T-operator formalism to a com-

pact representation for an effective parameter (complex dielectric con-

stant) representation for the effective medium approximation.

2. The resulting representation for the effective dielectric constant in-

cludes the interaction of microscopic effects (multiple scattering) ex-

plicitly.

13

WNP



3. The underlying analysis apAlies (however, with significant differences

in detail) to both periodic and random media. In the former ease it is

possible to solve the equations for the approximation; in the latter it is

necessary to develop approximations which use physically measurable

quantities (second order statistics and correlation functions).

4. One can prove convergence of the scaled model to the "homogenized"

model in both the periodic and random case.

5. The representation provides a (formal) basis for the systematic con-

struction of a sequential approximation to the effective dielectric con-

stant, including "higher order" expansions for the effective parameters

in terms of the small parameter, at least in the periodic case.

We wish to undertake a systematic investigation of such approximations

in the context of scattering from foliage covered terrain, and the multiscale

(homogenization) method offers a more general setting for such a compar-

A ison than does the T-matrix formalism, at least in the frequency range to

which it applies.

3.1 A General Model

To illustrate the ideas, consider the following general model: Let 0 C &R3 be

a region in which e(x), ,t(z) and a (z) are, respectively, the dielectric tensor,

magnetic permeability tensor, and conductivity tensor (3 x 3 matrices) of

14
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the material in region 0. In 0 the (vector-valued) electric and magnetic

fields satisfy

a f:) 0 I E, -0Vx E] [ t X)1 (45)T" 0 ;&(x) H(x) -Vx 0 H (t, x)

+ o( 0 E(t, x)
0 0 H(t, x)

E(o, z) = Eo(x), H(o,x) = Ho() (46)

V. ,JEol = 0, V. IsHo = 0 (47)

where Vx is the curl operator and V. = div. Note that (47) implies

V. [,E(t,x)] = , V. [H(t,x) = 0, Vt >0

It is necessary to assume that c(z),t(z) and o(x) are symmetric, and that

c(z),;z(x) are positivte definite matrices.

Using

VxE [0 -O E2 (48)
a a 0 E 3

*Z2 TZi

we see that (45) may be written in the abstract form

v 8v
A°(z)T = LA'(z)y- + B(z)v(t,x) (49)

where

v(tz) [E(t'z) E W (50)

H(t,)I

15
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the AP(t, z) are skew-symmetric, 6 x 6 matrices with 0's and l's as elements,

and

B a=() E
0 0]

The symmetry assumption means that (49) is a symmetric - hyperbolic

system of a type common in mathematical physics. The (asymptotic)

analysis of systems of this type with periodic coefficients depending on a

small (dimensionless) parameter, e.g.,

(for 0 < v << 1) was carried out in (Bensoussan, Lions, and Papanicolaou

1978) and in (Sanchez-Palencia 1980) using multi-scale methods (homog-

enization). The periodic case represents media with regularly imbedded

components.

The "inhomogeneities" in the media which govern the scattering of EM

radiation from foliage covered terrain are randomly distributed, and so, the

homogenization (multi-scale) method must be extended to treat this case.

A general theory for partial differential equations with random coefficients

was developed in (Papanicolaou and Varadhan 1979). This work forms the

basis for our treatment of the random scattering (and absorption) problem.

16
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3.2 Scaling the Model

To set up the analysis, we must prescribe a scaling for the parameters

of the random medium, in this case the permittivity, permeability, and

conductivity. The general form is

"i",":. 'e(.) = '(.)= E (x,.//.#)

P(x) =M"(x) =M(zx/v) (51)

a(z) = ca"z) = (z, z /V)

In this representation, v > 0 is a small (<< 1) dimensionless parameter

which characterizes the relative scale on which microscopic variations in the

medium take place. In previous reports we have shown how this parame-

ter may be identified in terms of the mean free path between elementary

scatterers in a foliage covered area.1

The presence of two scales in (51) suggests that we are permitting vari-

ations of the parameters across the structure of two different spatial types.

The "fast scale" y = xzv captures the effects of microscopic variations;

that is, as we pass from one elementary scatterer to the next. Variations

on the "slow scale" z capture the effects of macroscopic variations; that

is, variations as we move from one type of vegetation to another, or from

one region of a given type to another. Note that as y changes by one unit,

'That in, P, may be defined in terms of the mean free path between scattering cen-

., ters normalised by a characteristic length of the interaction process, e.g., the length of a

scattering region or the principal axis of the first Fresnel sone, etc.

17
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the macroscopic scale z changes by v << 1 units; and as z changes by one

unit, y changes by 1/v >> 1 units.

Using this scaling, there are two basic cases which can be treated by

versions of the method of multiple scales:

1. The functions e(x,y),;L(X,),a(z,y) are periodic in their second ar-

gument.

2. The functions e(x,y),js(z,y),a(z,y) are random functions of their

second argument which are stationary and satisfy a mixing condition.

The first case was treated in (Bensoussan, Lions, and Papanicolaou

1978) and in (Snchez-Palencia 1980), (see also the work of Tartar and

Murat (1986)) among many other related problems. The second case pro-

rides a basis for modeling certain types of foliage covered terrain.

The mixing which must be imposed in the second case is that the sta-

tistical correlations between random events in the medium must decrease

rapidly over the volume of interest. That is, the correlation between values

of e(z, yl) and C(z,y 2) decreases as JYI - Y21 --+ oo. In effect, this means

that the microstructure of the foliage at one point yj cannot depend too

strongly on that at the (distant) point y2. This is clearly reasonable in

many situations. It may not, however, be the case in wind blown grass.

Notice that the scattering medium is still permitted to have (statistical

18



or deterministic) variations which take place in the "macroscopic" z spatial

• +scale.

3.3 The Multiple Scale Hypothesis

The objective of the multiple scale asymptotic analysis is to compute ap-

proximations to the fields El(t,x),HI (t,x) in the limit as V - 0, that is,

in the limit as the microscopic variations become increasingly dense.

.. A formal procedure for computing approximations is to assume an ex-

pansion of the fields in the form

E"(,zlv) = Eo(x) + zE,(z,y) + ,'E 2 (x, y) +--- (52)

with y = x/v and a similar expansion for H". Introducing the change of..

coordinates
a a 1iaa --+ a + -- a(53)ax a v ay

in Maxwell's equations, substituting the expansions for El and H1, one

finds a sequence of equations for the terms Ej(z,y),k = 0,1,2,... (and

Hk). These may be solved using a device called a "corrector" which is

derived from a kind of "separation of variables" argument.

If the dissipation is zero (a = 0), the result is a representation of the

solution for the approximate field in the form

a q() 0 Eo(z) [ 0 Vx Eo(t,z) (54)

at[.q 0 q(z)] Ho(z) -Vx 0 Ho(t, z)

@t
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Eo(O,x) = Eo(x),Ho(0,z) = Ho(x)

V.7qEoJ = 0,V. [.HoJ =0

The (matrix-valued) functions q, (x), q. (z), which depend on the macro-

scopic spatial scale, are defined in terms of c(z, y), g(z, y) by the "corrected

averages"

w e q'(z) - ji bai, + a X7(Y) )}1,j z= , 2 , 3  (55)

where is e or ij,, and the function X* (y) is the corrector associ-

ated with c or A. Note that the effective parameters in the approximation

q,,q, are not just the averages of the rapid variations of the parameters

(z, .), (z,.) over the medium. They include the "correctors" which re-

tain the microscopic interaction effects (multiple scattering) in the final

approximation.

The correctors satisfy a system of the general form (see the following

sections for details)

V. [a(e, + Vx;'(y)] = 0, mfxj = 0 (56)

where e• is the jh natural basis vector in !R' In these equations .M is the

operation of averaging over a typical cell in the domain for the periodic

case; and it is expectation with respect to the stationary distribution de-

scribing the medium in the random case. When the conductivity a $ 0,

the homogenized model is more complex, including a "memory effect" - see

below.
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3.4 Implementation of the Approximation

Thus, to implement the approximation, we must solve the equations (56) for
the correctors and then compute the averages in (55). Computation of the

.correctors is possible in the periodic case (see, e.g., (Begis,Duvaut, Hassim

1981)(Bougat Derieux 1978)). However, in the random case of interest in

this project, the computation is very difficult. The equations (56) in the

random case are defined path by path; hence, one would have to have a

complete statistical characterization of the medium to be able to solve them.

This is impossible in practice, and one must evaluate the correctors by a

procedure like Monte Carlo simulations. Hence, these equations should be

regarded as the basis for derivation of further approximations or alternative

representations for the medium which require only physically attainable

statistical information, e.g., second order statistics in the microstructure

of the medium. Such approximations have been derived in other problems

(conductivity, porosity, etc.) in the past. We shall consider these methods

and their adaptation to the EM scattering/absorption problem in the next

section.

Before giving the details of the derivation of the approximation, we shall

make a few remarks on its interpretation.

e First, note that the general form of the approximation is valid (with

a very different mathematical interpretation) in both the random and

periodic cases.
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* Second, the role of the correctors in providing the "correct" form of

the approximation cannot be dismissed. Approximations which sim-

ply average the variations of the permittivity and permeability over a

domain are incorrect - making an error of "order one" in the small pa-

rameter v. That is, the approximation (55)(56) is an approximation

of "order v" (at least in the periodic case); omitting the correctors

invalidates this estimate.

3.5 Derivation of the Effective Parameters Using Ho-

mogenization

There are two basic cases to consider:

1. The periodic case when the inhomogenieties in the medium are spa-

tially periodic; and
-3..

2. The case when the inhomogenieties in the medium are randomly dis-

tributed.

.The expressions for the effective parameters are easier to grasp in the peri-

odic case; and they are more readily computable. For this reason we shall

- treat this case first as background to the random case.

22
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t'- "3.5.1 Periodic Media

Our treatment of this problem is based on (Sanchez-Palencia 1980).2

To begin, we rewrite Maxwell's equations

aDy = V x H - J" + F (57)
at
asw,2a OB V x E" + G

E"(x,o) = 0, H (x,o) = 0

where F, G are (localized) source terms and3

D = e(-)E7, B: = i,(;)H7, J = (E. (58)

We assume that e, I, a are smooth Y periodic functions of x/v which are

symmetric and positive definite.4 Adopting the multiscale hypothesis

E&'(z,t) = E°(x,t) + vE1 (x,y,t) +*.. (59)

. H"(x,t) = H°(z,t) + vH'(x,y,t) + ...

and similarly for D", BI and J" with each term in the asymptotic expansion

periodic in y. We shall use the change of coordinates

",%4".a a 1 a

Fa X-+ - T (60)

-' See also (Bensoussan, Lions, Papanicolaou 1978) and (Tartar 1979).
$We use the summation convention throughout this section -repeated indices in an

expression are summed.
4That is, eq = E#,, e , j f_ a1 2,' > 0.
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with y- x/, and similarly

(V x -, (V x .) + ( X x.)

div --- div. + -dive.

Rewriting Maxwell's equations in terms of these coordinates, inserting the

expansions (59) into them, and equating coefficients of like powers of i', we

arrive at a sequence of equations for EO,H 0 ,E1,H' , .... The 0(v - ) and

0(v ° ) terms are

Vx H = 0 , V. x E° = 0 (61)
aD o
a- V. x H ° + V. x H' - Jo + F (62)

a- = -V 5 xE ° - V. xEl + G

at

The equations (61) imply that Ho(z, y, t), Eo(z, y, t) are gradients in y for

fixed values of the other arguments.

The terms V. x El and V. x HI are derivatives of periodic (in y) func-

tions; hence, they have zero mean with respect to the averaging operation

= (VV, E1 ) V. x E'dy = 0 (63)

".1- (and similarly for V. x H 1) where Y is a typical "cell" of the periodic struc-

ture and IY I is the volume of the cell. Therefore, averaging the system (62)

over the cell Y, we arrive at the homogenized system

a!,
-~-V. X go-.j 0 + F (64)
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aD 0

where the overbar denotes the averaging operation. To complete the model

we must derive the homogenized constituent equations corresponding to (58).

These laws take two different forms, depending on the presence or absence

of dissipation (a = 0 or not).

Consider the divergence of (57)

div (aD + J divF (65)Kat
div ,-. =div Gat

Using the anstaz (59) and the coordinates (60), we have, at order v - ,

div (-- + j) = 0 (66)

and

div (- ) = 0 (67)

which, with the zero initial conditions, implies

* divVB0 = div,[.(x,y)H°(x,y) = 0 (68)

From (61) we have that E' and HO are gradients; hence, we can write

Eo - to = VO, Ho - o = VO (69)

with the means of 4 and 0 zero. Using these in (66)(67), we have

a {I(Y) [a, + 0 (70)

-f.M 25
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(Y) + ,ii (Y) + Eo =0 (71)

These are the key equations in application of the homogenization method

to Maxwell's equations. If we regard (70) as an equation for the potential 1P,

then, noting that ft'° does not depend on y, we can solve (70) by assuming

the "separation of variables"

'(X,y,t) = Xk(X,y,t)fR6(X,t) (72)

and regarding (70) as an equation for x(y) as a function of y, treating x, t as

fixed parameters. We call X'( t = 1,2,... ,d (d is the dimension of

the space) the correctors associated with jis,. Using (70) (72) the equation

for the kth corrector is

a / Xk I - , k = 1,2,...,d. (73)

This problem plays a key role in the homogenization method. We call it

the cell problem. The assumption that ttit(z, Y) is periodic in y, symmetric,

and positive definite (as a matrix for each z, y), guarantees that (73) has a

unique solution5 which has zero mean

TY- = y Xdy = 0

The solvability condition for (73) is that the right hand side have zero mean.

This holds since A,, is periodic and smooth.

s Among the set of functions periodic in y with first derivatives square integrable over a

cell, i.e., periodic functions in H,(R'd). See (Sanchez-Palencia 1980), pp. 51-54, or (Ben-

soussan, Lions, Papanicolaou 1978).
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The homogenized form of the field equations may be obtained using the

correctors. Writing out the 0(v0 ) term in the expansion of (65), we have

divvB' + div2 B° = divG (74)

Using 34 to denote the averaging operation, the solvability condition for

this equation is

M{div.B* - div2 G) = 0

which we rewrite as

M [div.{js(z,y)V/ + °0((x) - G}] -0

Using the representation (72) for the potential, (75) holds, if

M [.Vx +1H 0 -G] =o.

This provides the definition of the homogenized magnetic permeability, h,

as

The effective permittivity and conductivity will depend on the frequency

of the incident radiation; and the analysis must reflect this. Recall (66),

rewritten as
a

div { Eo +aEo =0 (77)

1% div{ f + IV

--div, [eV4j + div, [aV0,, (78)
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+divv e to + dive [cAo

Thus, the local "cell" equation is an evolution (in t) equation.

To treat (78) we use a technique introduced in (Sanchez-Palencia Sanchez-

Hubbert 1978). Let Vy be the space of suitably smooth functions 0(y) which

are periodic with zero mean, and let Vy be endowed with the inner product

y ayi aoja

00

Using this (78)Oy (7)

- a fy ayj I /ya

V +J%, -dy + ,ic (Bo) j = o

Using the inner product notation, this may be written compactly as

< + >(o),,> + < AO,o >v + < c,(o),6 >v,=o (80)

p. -. where

< c2, 0 >V,8, 6,dy

The evolution equation (81) can be solved for the potential

c(t) = -j(Wo),(t) + fo CA(-,o),()(r)dr (81)

3 1  2si Ac,- c
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Using this expression for 0, we can compute the average flux vector Do

and average induced current 3 o and define the effective permittivity and-

conductivity. Using Eo = 2 0 + V4, we write the average of Do cEo as

(D) M {Esi(Bo + Vk)} (82)

Eit{ { 1 (Eo)k}

+.M {ii~ (-c1(.),(t) +I C'( eAVc(2o) (r)dr)]

* This may be written -compactly as

(D) a: (2o) j(t) + j b(t - r) (Bo) i(t - r) dr (83)

where

-. - ei) (84)

be, .M j (Y)a e-Ar C3) (y (85)

In a similar fashion, we can compute the induced current

.. )) = a,(t0)F(t) + ] b',(t - r)(.to),(t - ,r)dr (86)

- where a" and bl are defined by (85)(86) with E replaced by a.

Using Laplace transforms, we can more readily express the effective

scattering parameters as a function of frequency. Indeed, if we let D'(W)

be the Laplace transform of D" with respect to t, and similarly for the

other variables, then Maxwell's equations take the form

wb" + x= k- + P (87)
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wB&=-V x E"+ G

The claim is that Maxwell's equations approach the homogenized laws

wbh + = (wE + 0 )hth (88)

13h = ,fth

where the superscript (.)h denotes the "homogenized" laws. Using the

evolution equations (83) (86) we can identify

wa!; + wb:(w) + ai + b'j(W) = (wE,, + a')h, Rw > 0 (89)

This completes the derivation of the (first order) homogenization theory

for Maxwell's equations.

Remark: Using the arguments in (Bensoussan, Lions, Papanicolaou 1978)

and (Sanchez-Palencia Sanchez-Hubbert 1978) and (Sanchez-Palencia 1980),

it can be shown that the homogenized Maxwell's equations (83)(86) (or the

frequency domain version) have a unique solution. Moreover, it can be

shown that the homogenized Maxwell's equations are the limits as v -- 0

of the original scaled Maxwell's equations (in an appropriate weak* topol-

ogy).

Rather than give these arguments, we shall turn our attention to the

case when the coefficients in Maxwell's equations are random processes in

the spatial variables.
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3.5.2 Random Media

As we have noted earlier, the formulas for the effective parameters in the

homogenized form of Maxwell's equations carry over in form, at least, to

the random case. The averaging operation .M is interpreted as expectation

with respect to an appropriate probability measure. While the procedure

of simply expanding the field quantities in asymptotic series in the small

parameter is only formal in the random case, it can still be used with appro-

O priate cautions to determine equations for the homogenized field quantities.

The arguments for convergence of the scaled field quantities to the homog-

enized quantities are, however, substantially different in the random case.

The central difficulty in treating random coefficients arises in the mean-

ing and evaluation of the "correctors" XE, X", X'. They are random pro-

cesses which must be evaluated (numerically) by a Monte Carlo type pro-

cedure. We shall take up this issue later in the project. In this section

we shall examine the more fundamental issue of existence and uniqueness

of solutions to the corrector equations. Since each of the three correctors

xI, x", X' satisfies the same type of elliptic equation with random coeffl-

cients, we shall treat the generic problem: Find X(y; w) such that

x(0;w)= 0,EX(y) =0 Vy (90)
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aX/ayj is a square integrable stationary process Vj and

-.- (w, w)-) = - ( ,)

in the sense of distributions. We assume that

a1o1 < aq (y, w), <- e 1 1 :5 VC E %, > o 91

where ai, (y, w) and g, (y, w) are square integrable stationary processes, :,j -
pn.

Notation - Assumptions We shall consider a set up for stationary pro-

cesses as presented in Papanicolaou and Varadhan (Papanicolaou Varadhan

1979). Let (1l, A, P) be a probability space and define M = L 2 (fl, A, P). We

assume that

Y is separable (92)

there exists a strongly continuous unitary group T. on Y', E R (93)
.%

Tv is ergodic, which means if f E Y satisfies (94)

Tf = I, Vy, then f is a constant.

iff > 0, then T. _> 0 and T.=1 (95)

The group T. has a spectral resolution defined by

T=f, e vU(d,\)

.4 32
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where U(dA) is a projection valued measure. We consider the complex

extension of M1, provided with the scalar product Eft, whenever f, are

'. two elements of Y. The measure U(A), A Borel subset of R", satisfies

EU(A)fuA,)= Vf, E H,An A' =

EU(A)fU(-a) =,._(Af

and by ergodicity
U({0})f = Ef (96)

We next define

,,... ,(,w.,) = (Tv) (,) =o (97)

which are closed densely defined linear operators with domains D (Di) in M.

Note that

E{.Dif} = -E{D, f} Vf, E D(D,), (98)

and

Df = i A AU(dA)f. (99)

,%

If D'f =0 Vj, then since

-fEl,12 =1 A'E1U(dA).f12

it follows that U(dA)f =0 VA $0, hence

' = U({o})f = Ef.

-5 33
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Let m, fl I D (D,) which is dense in M~. We equip M( with the Hilbert

scalar product
d

((,f)~ + D j (100)

We identify M with its dual and call M1 the dual of MI. We have the

inclusions

--

w.

"I !)"i ec spac bing= (s wh dense in theWenextione with contnuoHiijecion

The family T. is also a strongly continuous unitary group on MI since

TvDif =DiTvf.

It can be extended as a strongly continuous unitary group on )( I by the

formula

and <,> refers to the duality between )P and )'

Remark 1. The periodic cas3e.

Let fl be the unit n dimensional torus, A the a-algebra of Lebesgue

measurable sets and P Lebesgue measure on fl. Then M is the space of

SThmeasurable periodic functions (period 1 in each component) such that

f f(w))2dw < oo.

I We define

.%
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hence

D,if = -f

, An important fact in the periodic case which does not carry over to the

random case, is that there is no analogue of Poincare's inequality. The
p.

consequence is following. Consider the quotient space )O/R of elements of

Y' which differ by a constant. Denote by Jfj the equivalence class related

to an element f, then the quotient norm is given by

11 11= {Ef - El_12  + _EjDj_121},2
i

This is not equivalent to (Ei ED#- ? )'/ 2 In the periodic case one has

12 12mU)12 dW + J 12&,II U] 1= oI -+ f

where m(f) = fn ?(w)dw. Poincare's inequality implies that 11 is

equivalent to (Ff. a21 du-,w)

Consider now random variables not necessarily in M. We assume that

s is a linear group on the set of complex random variables such that

V*... complex random variables, 0 Borel bounded function on C', then

E¢(T,,...,Tt:) = E¢(17,... ,') (101)

ytw -- T is measurable,

T 0 if > 0.
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A stationary process is a stochastic process 17(y; w) which can be repre-

sented in the form

v7(Y;w) = (102)

The space of square integrable stationary processes can be identified

with M. Moreover

* (y;w)= DT ,(w)= TyDi (103)

if E kl.

Note that the continuity assumption on Ty implies that the square inte-

grable stationary processes are necessarily continuous function of y with

values in Y. Hence, ifj E N, n(y;w) E C Y(R; N), space of uniformly contin-

uous functions on R" with values in Y. If E M' then r7 (y;w) E C'(R"'; k).

Note that Di E L£(M1;M). If E M, we can consider the distribution

derivative ar/ayi with values in M, defined by

O G(y)dy q y w VO E C0R

Let us check that

- 1  
1 (Yvw)aody =1 DjT O(y)dy (104)

which is an equality in M-. This proves that t7(y,w) E C-(9Zn; M-N) and

the distribution derivative oy/ 8 y with values in N can be considered as a

continuous function with values in M-1.
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To prove (104) pick 4 E 0, then

E J DTiIO(y)dy = -EJ D,4T O(y)dy

- -E ]. DT-yj8(y)dy

-- Ef,(-y,w)-Oy()dy

= -Ef " 0O
=- Jp17 (Y, W)- (y) dy

which completes the proof of (104).

The Cell Problem We consider here stationary processes aj (y; w) such

that

aoI I <_ ia (y, w)&, _ i I VER",a0 >0 (105)
ij ao

Let g,(y,w) = Tv j square integrable stationary processes, j = I,... n. We

shall solve the problem: Find

X (y; w) E C'(!R;,M), X(0;,w) =O,Z X (y) =0 Vy (106)

ax/lyj is a square integrable stationary process Vj

a( ayj G ay
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in the sense of distributions with values in X (or as continuous functions

with values in M-1).

Papanicolaou and Varadhan (Papanicolaou Varadhan 1979) have shown

the existence and uniqueness of the solution of (106). We shall reproduce

their proof with minor changes. Note that X(y; w) itielf is not a stationary

process. This is a big difference with respect to the periodic case and relates

to Remark 1. Note also that X(y;w) E C 2 (Rr"; Y-). 6

Let i E H such that

(Y. T"O

we can assert that

EFjDk = EkDj4, V E )1. (107)

Indeed we have to show that

D , = (10s)

as an equality in M- 1. But

@a

T,,A: 7x (y;w

a2x

hence

TvDk~, TvD,~k

OBy virtue of (96) it is sufficient to hive (106) for y=0.
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which implies (108).

We have also

,.- ".,

E= o. (109)

This follows from
x(y;w) = T ,jT RjidO

hence

E(x/y) = ETjyi - 0

by the assumption. Therefore (109) follows.

We can then state

Theorem 1. There exists one and only one solution of (106).

Proof.

-A Uniqueness.

Assume that Og i / ay =0. Define

.,, . , (-iA; -,a)-. #(2 = (110)

Note that (106) can be written as

-DTv(ajv ) =0 in k - '

9.

;
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hence, as is easily seen

-iiD = 0. (111)

Because of (108) we have

f A &CU (dA)k, _ ________

anIiA -312  Jan I jA\41 2

which implies

(-iA, - I0)(iAk - i3 (dA) ,(wfit. I j,\- 312
0j

- J ( iA , -12 U(dA)R (W)

Therefore, (111) reads

.- ~

Eaij, + 0Ea,, = o. (112)

However,

W.9
2  /f 2 (-iA, - )(-i # -0) ) EU(dA)5iZ,

4 ZEU{0}ij,k as 03 -0
4,~

and by ergodicity and property (109), we get

E11$1 -4 Oasf -- 0.

Therefore,(112) implies

EZ~q~j= 0
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hence j = 0, which implies also X " 0.

Existence:

Let 0 > 0, we solve the problem

a. - (a,,j + aX0 = __.aa' _ ay,

" ×(y; w) = Ty5R, R E M' (113)

This problem is equivalent to

EZ~iDj'Dj + PEO = Ej 4 E N' (114)

We easily deduce the estimates

-EIDfI12 < C

OE(2j)2 < C.

Let us extract a subsequence such that

DjRO - R. in H weakly.

ED9ODkq = EDRfiDj4

EDjRj 0

we deduce (108) and (109). Going to the limit in (114) we have

EZ i Dj = -EjjDj V4 E N'. (115)
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Define then

X(y;w) = (ei V - 1)j (-iA)U(dA)5Aw) (116)

then

57x Aj A~ vL ,k U (dA)i~w

and X(O;w) = 0, EX(y) = 0. Then (115) can be written as

-Daijj = Djgj equality in M-1

which is indeed (106).

4 Bounds for Effective Parameters

In previous sections we have examined methods for representation and com-

putation of effective parameter models for heterogeneous media in terms

of statistical characterizations of the media. These methods lead to repre-

sentations for the effective parameters, e.g., the effective dielectric constant

and conductivity, which are difficult to evaluation in any but the simplest

cases. In this section we examine the derivation of bounds on the effective

parameters as a means of quickly providing good approximations to the

behavior of the medium.

There has been a great deal of work in this area, not only in electromag-

netics, but also in conductivity and elasticity. This work dates from the
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early years of this century (Bergman 1978), and it includes some very recent

work (e.g., (Ericksen, et al. 1986)). We have been studing the portions of

this work applicable to the case at hand - scattering and absorption of EM

radiation by foliage covered terrain. Several key issues must be resolved

before the work can be applied directly to scattering/absorption from fo-

liage with more than one kind of elementary scatterer. We shall point out

these issues in the following paragraphs.

4.1 Definition of the Effective Parameters

The starting point is a definition of the effective parameter, e.g., the effec-

tive permittivity. Suppose

E(X,w) = E1l 1(w) +•.• + ENlN(W) (117)

is the dielectric "constant" of a composite medium, where Ei = 1,...,N

is the (complex) dielectric constant of medium i, and the indicator function

i is 1 for all samples w E fl which have medium i at point z, and zero

otherwise. We use (fl, 7, P) to denote the probability space on which the

statistics of the phenomena are defined. The quantity

.=

f, =]f P (&'w)1,(w) (118)

is the volume fraction occupied by the material of type j = 1, 2,..., N.

The spatially dependent random conductivity and magnetic permeabil-

ity are similarly defined. In our case these functions depend on the random
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geometry of the scattering foliage which may be available only in terms of

second order statistics. The bounds obtained for the "effective parameter"

approximations of these functions should not depend on statistics beyond

this level.

If E(z,w) and D(z,w) are the electric and displacement field vectors

(stationary in time), then

D,(z,w) = EE,(x,w) (119)

V. D(z,w) =0

V x E(z,w) = 0

and

JP(dw)E(zw) =

provides the boundary condition, where P is a constant field incident on the

region. By normalizing the field magnitudes and redefining the coordinates,

we can take E = ek, the kth unit vector in 1R3. Let E' and Dk denote the

corresponding fields. Then (119) may be rewritten

* d

Di(xw)= e (xw)E (xw) (120)

The effective dielectric constant may be defined as

= J P(dw)D (w) (121)

In (Golden Papanicolaou 1983) it was shown that this essemble average

coincides with the usual definition involving a volume average.
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Equation (121) may also be written in the symmetric form

= PE l ll (122)
j=1

where the bar denotes complex conjugate. This expression suggests the

interpretation of c* as the dielectric constant of a fictitious, homogeneous

medium (for the volume V) which provides the same value for the electro-

static energy stored in the volume occupied by the heterogeneous medium.'

4.2 Methods for Computing Bounds

Approximation to the effective permittivity (or conductivity in thermal

systems) have been derived by three basic methods. The original work of

Haskin and Shtrikman (1962) was based on variational principles, and these

have been reformulated in recent years to provide one of the basic meth-

ods for deriving aproximations (Milton 1981a,1981b). The second method

for deriving bounds is the method of "compensated compactness" (Tartar

1986). The third method involves the use of complex analysis and "rep-

resentation formulas" (Bergman 1978) (Golden 1986) (Golden Papanicolaou

1983). We shall review the first two methods in detail in another report.

Here we shall briefly describe the analytical approach to deriving bounds,

indicate its range of applicability, and discuss our ideas for adapting the

'The volume average form is ei*iEoll = [fv c(r)IE(r)IJdV] /m e .(V) where V is the

representative region, mea.(V) is its volume, and Eo = [fv E(r)dVI /meas(V) is the
- '.average (incident) field.
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method to treat scattering and absorption from foliage.

If we substitute (117) into (121) and divide by CN, then we obtain

..mh,..., _= JP( ) ( I ()+ iN) E, () (123)

Here hi = i/cN. The key idea in the work of Bergman (Bergman 1978) is

to regard m(.) as a function of the complex variables hl,..., hj- - 1 in C - 1.

This permits one to use (spectral) representation formulas for m(.) which

* allow the derivation of bounds based on the extreme points of certain sets

of measures. By expanding the representation formulas about the case of a

"homogeneous" medium hi = 1,j N 1,.. - 1, it is possible to obtain a

characterization of the underlying measures in terms of their "moments."

These moments are functions of increasing amounts of information on the

statistical properties of the medium. For example, if only the volume frac-

tions f; from (118) are known, then only the first term in the representation

can be computed explicitly. This leads to the classical Wiener bounds:

For two-component media -

*- fr f2 -1
S- + - < * < f1 CE + f2 C2  (124)

For three-component media -
. , fi f2 3-

+< </f + f22 + f3 (125)
(E1  (2 ( 3 /

These bounds are achieved by parallel plane configurations of the materials.
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If additional information is available on the statistical description of the

medium, then more sophisticated bounds can be obtained. For example, for

a two-component medium which is statistically isotropic the first moment

of the spectral measure can be computed (in the expansion). This leads to

the Hashin-Shtrikman bounds (assume without loss of generality CI _< E2)

1-"+ f2 <f
1/(E2 - Ei) + fj/ 3 E <

2 + 1/(El - E7) + f 2 /3c 2  (126)

" 4.3 Multicomponent Media

There is a substantial difficulty in passing from two-component materials to

N-component materials with N > 3 when using the analytical continuation

method. Basically, one must deal with functions of more than one complex

variable (h1 ,h 2,... ). The precise difficulty arises from the fact that the

extreme points of the associated set of spectral measures are not known.

Prior to the paper (Golden, Papanicolaou 1985) there was no systematic

method for treatment of multi-component media (using the continuation

method). In the case of three-component media, it is possible to circum-

vent this problem by imposing a linear relationship among the complex

parameters, and expanding the spectral measure about the (linear) param-

eter. In (Golden, Papanicolaou 1985) an unconfirmed technical hypothesis

was introduced which permitted recovery of the Hashin-Shtrikman bounds

for three-component media. Assuming cl _S (2 < (3 we have

(1 + / <* (3 €+ 1/ (127)
A,.: 3e, A3 3E3i 3
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These bounds are "optimal" for materials consisting a mixture of spheres of

all different sizes of tj and E2 materials each coated with E3 material in the

appropriate volume fraction. Additional bounds were obtained in (Golden

1986) for complex permittivities (thus including the absorption of energy

in the material).

The analytical continuation method is a powerful technique for deriva-

tion of bounds on the material properties of multi-component media; and it

is useful to examine its potential for the evaluation of scattering/absorption

phenomena in the interaction of EM radiation and foliage. Our evaluation

of this methodology is not yet complete, however, the following points are

worth making at this time:

* The method is based on the assumption that the medium is nearly

homogeneous; that is, the normalized permittivities Ej/EN '_Z1. This

is a restrictive assumption for foliage, and it may limit application

of the approximation to certain kinds of foliage (mixtures of grasses,

S etc.).

e While the case of two component media is reasonably well developed;

the case of three-component media is less clear. This is the key case

if one is to understand the interaction of scattering effects in an envi-

ronment of two different types of scatterers in a uniform background.

The limitations on the method are both technical and physical.
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* The technical limitations are mainly due to the incomplete character-

ization of the set of spectral measures for functions of two complex

variables.

* The physical limitations are more fundamental. The method does

not account for the geometry of multiple scattering processes. That

is, while it is capable, in principle, 'of including higher order sta-

tistical functions in the expansion for the effective permittivity, the

method develops the bounds in a fashion which is well removed from

the physical properties of the medium. The extreme points of the

set of measures which are used to determine the bounds are singular

measures ("delta functions") which may not correspond well to the

distributions of scatterers in typical foliage. It would be better to

develop the bounds in a (restricted) set of measures which are repre-

sentative of foliage. It appears to be possible to adapt the analytical

continuation method to this case.

We are continuing our investigation of this methodology for the con-

. struction of bounds with an eye to improving on these limitations. Our

objective is to compare the approximations produced by this method with

those derived through the other techniques we have studied and develop

*. a hierarchy of approximations for scattering in foliage (of various types).

We shall design a series of numerical experiments to test the methods on

representative data.
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